“— |

\ 4
Murdoch

UNIVERSITY

()

Stacks and
Queues

Lecture 8

Data Structures and Abstractions

Temporary Storage

 When processing it is often necessary to put
data into temporary storage.

* This can happen, for example, when:
— processing events in an event-driven OS;
— processing email in and out of a server;
— scheduling jobs on a main-frame;
— doing calculations;
— sorting or merging;

* The most common data structures for

temporary storage are stacks, queues, heaps
and priority queues.

IIIIIIIIII

Stacks

Stacks are ADS that emulate, for example, a stack of books:
you can only put things on or take them off at the top.

There are only two operations allowed on a stack: [1]
— Push (something on to it)

— Pop (something off it)

Plus two query methods:

— Empty ()

— Full () // optional

Since the last thing on is the first thing off, they are known as
LIFO (Last In, First Out) data structures, or sometimes FILO
(First In, Last Out).

In essence, a stack reverses the order of the data.

1 Murdoch

N UNIVERSITY

Stack Implementation

e Stacks can be implemented any way you
want, the encapsulation of the container used
ensures that it does not matter.

As long as it only has Push, Pop, Empty
and (optionally) Full, then itis a stack.

Most commonly they are implemented using
arrays, lists or an STL structure.

If none of these exactly fit the required
abstraction that we are after, they should be
encapsulated inside our own Stack. [1]

IIIIIIIIII

Error Conditions for Stacks

* |f you try to Push () onto a stack that has no
free memory, then you get overflow.

* If you try to Pop () from an empty stack then
you have underflow.

* So Push () and Pop () return a boolean to
indicate if one of these errors has occurred.

IIIIIIIIII

Stack Example (Animation)

Array Implementation

Linked List Implementation

| »] NULL

g urdoch

UNIVERSITY

Stack Example (Animation)

Push (10)

Array Implementation

10
opm_top

Linked List Implementation

| —»{ 10 }—{ NULL

g urdoch

UNIVERSITY

Stack Example (Animation)

Push (1)

Array Implementation

10

1

m_ topm top

Linked List Implementation

10 =] NULL

<

urdoch

UNIVERSITY

Stack Example (Animation)

Push (23)

Array Implementation

10| 1 | 23
m_ topm top

Linked List Implementation

— 23 = 1 = 10 }—=|NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Pop (num) num | 23

Array Implementation

10| 1 | 23
m_ topm top

Linked List Implementation

— 23 = 1 = 10 }—=|NULL

g urdoch

UNIVERSITY

Pop (num) num| 1

Stack Example (Animation)

Array Implementation

10

1

m_ topm top

Linked List Implementation

—{ 1 = 10 =] NULL

g urdoch

UNIVERSITY

11 of 37

Stack Example (Animation)

Pop (num)

num/| 10

Array Implementation

10

opm_top

Linked List Implementation

|

—» 10 }—=| NULL

g urdoch

UNIVERSITY

Stack Example (Animation)

Pop (num) num

Array Implementation

1

< UNDERFLOW D>

\ /
Linked List Implementation

| »] NULL

'l Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (12)

Array Implementation

12
opm_top

Linked List Implementation

| —»{ 12 }—{ NULL

g urdoch

UNIVERSITY

Stack Example (Animation)

Push (34)

Array Implementation

12

34

m_ topm top

Linked List Implementation

12

—p{ NULL

<

urdoch

UNIVERSITY

Stack Example (Animation)

Push (23)

Array Implementation

10| 1 | 23
m_ topm top

Linked List Implementation

— 23 = 1 = 10 }—=|NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (36)

Array Implementation

10| 1 | 23| 36
m_ topm top

Linked List Implementation

—> 36 = 23 = 1 = 10 }—{ NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (98)

Array Implementation

10| 1 |23 | 36| 98
m_ topm top

Linked List Implementation

—» 98 | = 36 =+ 23 }={ 1 = 10 }—=|NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (8)

Array Implementation

10| 1 |23]|136|98 | 8
m_ topm top

Linked List Implementation

— 8 |- 98 |+ 36 || 23 > 1 }—={ 10 |—|NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (76)

Array Implementation

10| 1 | 23| 36|98 8 |76
m_ topm top

Linked List Implementation

—> 76— 8 | 98 | 36 > 23 | 1 = 10 }—| NULL

1 Murdoch

W UNIVERSITY

Stack Example (Animation)

Push (66)

Array Implementation

10| 1 |23|36|98| 8 |76 | «—__ OVERFLOW >

m_top

Linked List Implementation

Pe——> 66 > 76 | 8 | 98 | 36 > 23 |~ 1 }—={ 10 }—{ NULL

1 Murd

W UNIVERS TEND

Array Push Algorithm

PUSH (DataType data): boolean
IF m_top >= ARRAY_SIZE-1
return FALSE
ELSE
Increment m_top
Place data at position m_top
return TRUE
ENDIF
END Push

'l Murdoch

N UNIVERSITY

Array Pop Algorithm

. POP (DataType data): boolean

. IF m_top<0

. return FALSE

. ELSE

. data = data at position m_top
. Decrement m_top

. return TRUE

. ENDIF

. END Pop

'l Murdoch

W UNIVERSITY

Linked List Push Algorithm

. PUSH (DataType data): boolean O
. IF there is memory on the heap m_top "
. Get newNode from the heap

. Put data into the newNode

. IF m_top is NULL 66

. m_top = newNode

. ELSE

. newNode.next = m_top

. m_top = newNode 76

. ENDIF

. return TRUE

. ELSE

. return FALSE

. ENDIF

. END Push

'l Murdoch

W UNIVERSITY

Linked List Pop Algorithm

POP (DataType data): boolean

: IF m_top == NULL m_top
. return FALSE

. ELSE

. data = m_top.data

. oldNode = m_top

. m_top = oldNode.next

. release oldNode memory
. oldNode = NULL

. return TRUE

. ENDIF

. END Pop

'l Murdoch

W UNIVERSITY

Using the STL

The other possibility is to use one of the STL structures.
If using a vector or list, then the algorithms above barely change.

However, remember that the structure must still be encapsulated in a
class, otherwise it will not have just the Pop () and Push () thatitis
supposed to have.

Finally, there is the STL stack class, (requiring <stack>), which is obviously
the best STL class to use your Stack class.

STL stack is an adapted STL container (container adapter) for special use
as a stack. No iterators are provided.

However, even this must be encapsulated if it does not conform to our
abstraction of what a stack should be (pointed out earlier and see slide
notes from earlier). [1]

1 Murdoch

N UNIVERSITY

Features of the STL stack which don’ t fit in with our Abstraction

1. Its pop () method, only removes the data, it
does not pass it back to the calling method.

2. In fact there is a top () method which returns
the data (by reference) at the top of the stack.

3. Neitherpop () , top () norpush () returna
boolean: overflow and underflow must be
checked separately.

Given the abstraction we are after, even the
STL stack must be encapsulated. 1 Murdoch

IIIIIIIIII

Stack Header File using STL stack

// Stack.h

//

// Stack class

// Version

// Nicola Ritter
// modified smr

// NO |I/O HERE. LET THE CLIENT DEAL WITH I/0O
#ifndef MY_STACK
#define MY_STACK

Hinclude <stack>
Hinclude <iostream>
using namespace std;

L

Murdoch

UNIVERSITY

. template <class DataType>

. class Stack

|

. public:

. Stack () {};

. ~Stack () {};

. bool Push(const DataType &data);

. bool Pop (DataType &data);

. bool Empty () const {return m_stack.empty();}
. private:

. stack<DataType> m_stack; // encapsulated STL stack
A L

'l Murdoch

N UNIVERSITY

. S —
. // It is a template, so we have to put all the code
. // inthe header file
. A —
. template<class DataType>
. bool Stack<DataType>::Push(const DataType &data)
A
. bool okay = true;
. try
. {
. m_stack.push(data);
. }
. catch (...)
. {
. okay = false;
. }

return okay;
© }

F'1 Murdoch

N UNIVERSITY

. N —
. template<class DataType>

. bool Stack<DataType>::Pop(DataType &data)
|

. if (m_stack.size() > 0)

. {

. data = m_stack.top();

. m_stack.pop();

. return true;

. }

. else

. {

. return false;

. }

1}

. A —
. #endif

F'1 Murdoch

N UNIVERSITY

Simple Example of Stack Use

// StackTest.cpp

//
// Tests Stack classes

//

// Nicola Ritter

// Version 01

// modified smr
// Reverse a string

/]

Hinclude <iostream>
#finclude <string>

#include "Stack.h“ €

using namespace std;

770ur stack

F'1 Murdoch

N UNIVERSITY

typedef Stack<char> CharStack;
e

void Input (string &str);

void Reverse (const string &str, CharStack &temp);

void Output (CharStack &temp); // const — check what it
//does first??

int main()

{
string str;
CharStack temp;

Input (str);
Reverse (str, temp); [1]
Output (temp);

cout << endl;
return O;

1 Murdoch

N UNIVERSITY

. void Input (string &str)

«

. cout << "Enter a string, then press <Enter>: ";
. getline(cin,str);

]

. —

. void Reverse (const string &str, CharStack &temp)
«

. bool okay = true;

. for (int index = 0; index < str.length() && okay; index++)
. {

. okay = temp.Push(str[index]);

. }

* }

mn Murdogh

void Output (CharStack &temp) // would const work?

{

bool okay;
char ch;

cout << "Your string reversed is: ";
okay = temp.Pop(ch);
while (okay)
{
cout << ch;
okay = temp.Pop(ch);
}

cout << endl;

1 Murdoq

)

Screen Output

Enter a string, then press <Enter>: This is a string
Your string reversed is: gnirts a si sihT

Press any key to continue.. ..

F'1 Murdoch

N UNIVERSITY

36 of 37

Advantages of Implementations

. It is assumed for each of the containers below, that our Stack
encapsulates it.

Array Linked List list/vector/deque STL stack
Easy to code Full memory control |Easy to code Easier to code
compared to all the
others.
Memory ‘never’ Memory ‘never’ Memory ‘never’
runs out. runs out. runs out.

1 Murdoch

N UNIVERSITY

Disadvantages of Implementations

. It is assumed for each of the containers below, that our Stack
encapsulates it.

Array

Linked List

list/vector/deque

STL stack

Can run out of space
easily.

More difficult to
code as it uses
pointers.

Excess code sitting
‘behind’ the
implementation.

Excess code sitting
‘behind’ the
implementation.

Only available in
with some
languages.

e.g C++ has STL, Java

Only available with
some languages.

e.g. C++ has STL,
Java has Java

has Java collections |collections
framework framework
1 Murdoch

N UNIVERSITY

Readings

 Textbook: Stacks and Queues, entire section on Stacks.

* For amore details of Stacks with some level of language
independence, see the reference book, Introduction to
Algorithms section on “Stacks and Queues” in the
chapter on “Elementary Data Structures”. You will see
how removed the STL stack is from the abstract stack.
We want the abstract level — see earlier lecture notes
on level of abstractions.

Textbook: Standard Template Library, section on
Container Adapters

Library Ereserve: Deitel & Deitel, C++ how to program
[ECMS]. Chapter 15 part A. [1]

F1 Murdoch

N UNIVERSITY

http://prospero.murdoch.edu.au/search~S10?/rict209/rict209/1,1,1,B/frameset~1530162&FF=rict209&1,1,

Stack
Example

A Calculator

It is possible to use two stacks to do simple one line

calculations.

The first stack stores operators (characters) that have
not yet been performed.

We will start with just + - * /.

The second stack stores the numbers being operated
upon.

Therefore we are trying to find the answer to
something like

10+8/2-6*5
What is the answer to this?

For simplicity’s sake, we will assume integer input, but
floating point output.
1 Murdoch

N UNIVERSITY

41

Using Diagrams
Try this yourself or in a group.

Draw up an array (set of boxes) to represent the
string:

“10+8/2-6*5"

With one number (not digit but the whole integer) or
operation in each box

Draw an array for the number stack and one for the
operation stack

Figure how to do it with diagrams first.

IIIIIIIIII

42

Test Data

The next thing, of course, is to design the test data: build the test
plan.
Construction of the test plan occurs before any code is written.

— The test plan is written once you have analysed the problem to be
solved

— Gets added to as software development progresses.

| came up with over 50 possibilities that should be tested in the test
plan!

— See the spreadsheet with testdata related to this lecture note.
— More extended examples of testing in the “testing 4 later units” folder.

— You must perform regression testing. This can be “painful” so think of
ways to automate the testing process. You don’t have to use it in this
unit but should in later units. Various approaches are used in industry.

lgnore advice about test plans and testing at your own peril.

1 Murdoch

N UNIVERSITY

43

Top Level Algorithm

We are used to the infix notation: 2 + 3 and using this notation means
that when you want to override operator precedence, you need to use (
)asin (2 +3) *5.

In Polish (discovered by a Polish logican Jan Lukasiewicz) notation (prefix
notation), there is no need to use (). Prefix notation: +2 3

Someone else came along later with something called Reverse Polish
Notation (postfix form). Postfix notation: 2 3 +

With RPN, there is an additional advantage in that operators are in the
correct order for digital computers.

RPN examples: 23 +5*

So think this way: push the numbers on the stack until you get an
operator. Then pop the last two numbers of the stack and apply the
operator. Put the result back on the stack and repeat the whole process.
This is easy. The question is how to convert from infix to RPN (postfix).

[1]
1 Murdoch

N UNIVERSITY

44

Top Level Algorithm

Assuming that we have the equation in a string, try to design an
algorithm that will do the top level of process control of the string....

Use what you understood when you tried to figure it out using a
diagram. If you have forgotten go through using diagrams again.

In other words, most of it will be enclosed in a loop
WHILE more characters
ENDWHILE

Remember to keep it a control function: put off until later working out
how things are actually done.

In other words, concentrate on what not how.

Normally (of course), we would be designing, coding and testing in
parallel.

1 Murdoch

N UNIVERSITY

45

Next...

* Next work on each part of the algorithm that
you have got, as a what not a how.

* |deally, you should do this with a group of two
or three other people. But you can always give
It 2 go on your own.

IIIIIIIIII

46

Readings

 Textbook: Stacks and Queues, section on
Application of Stacks: Postfix Expressions
Calculator.

— The RPN calculator is described in the above
section.

— There are a number of calculators which accept
RPN entry and therefore make calculations of long
expressions easy — less keys to press to get the
same result.

IIIIIIIIII

47

Queues

* Queues are ADS that emulate, for example, a queue at the
movies: you can only get on the back of the queue, and off at

the front of the queue.
* There are only two operations shown for a queue: [1]
— Enqueue (something on to it)
— Dequeue (something off it)
Plus two query methods:
— Empty ()
— Full ()

Since the last thing on is the last thing off, they are known as
FIFO (First In, First Out) data structures, or sometimes LILO
(Last In, Last Out).

1 Murdoch

N UNIVERSITY

Queue Implementation

Queues can be implemented any way you want,
the encapsulation of the container used ensures
that it does not matter.

As long as it only has Enqueue, Dequeue,
Empty and Full, thenitis a minimal queue.

Most commonly they are implemented using
arrays, lists or an STL structure, with the STL
Queue being more relevant.

However since none of these exactly fit the
required minimal abstraction we are after, they
should always be encapsulated.

IIIIIIIIII

Error Conditions for Queues

If you try to Enqueue () onto a queue that has
no free memory, then you get overflow.

If you try to Dequeue () from an empty queue
then you have underflow.

So Enqueue () and Dequeue () return a
boolean to indicate if one of these errors has

occurred.

In the animation that follows, two approaches
are used.

— The internal container is an array

— The internal container is a linked list

IIIIIIIIII

Queue Example (Animation)

Array Implementation

m_size O

m_front
ck

Linked List Implementation

m front

=$| NULL

k

1 Murdoch

W UNIVERSITY

Queue Example (Animation)

Enqueue (10)

Array Implementation

10

m_front
ak back

m_size

Linked List Implementation

M_front mpd 7 ()

1

» NULL

riiviordocnm

W UNIVERSITY

Queue Example (Animation)

Enqueue (1)

Array Implementation

10

1

m_ front
m backm back

m_size

Linked List Implementation

M froNt amp

10

e

1

» NULL

[

]

riiviardocim

W UNIVERSITY

Queue Example (Animation)

Enqueue (23)

Array Implementation

10

1

23

m_ front
m backn back

m_size

Linked List Implementation

M froNt amp

10

e

1

e

23

» NULL

S |

riiviardocim

W UNIVERSITY

Queue Example (Animation)

Dequeue (num)

num | L0

Array Implementation

10

1

23

m_fromgfront
m back

m_size

Linked List Implementation

M froNt amp

10

e

1

e

23

» NULL

riiviardocim

W UNIVERSITY

Queue Example (Animation)

Dequeue (num) num/| !
Array Implementation
1 23 m size
m fromt front
m back
Linked List Implementation
m front —> 1 = 23 »] NULL
k [
i iviurdocn

W UNIVERSITY

Queue Example (Animation)

Dequeue (num)

num| 23

Array Implementation

23

nt m_fromrt_front
k m back

m_size

Linked List Implementation

m front —_—)3

» NULL

k [

|

W UNIVERSITY

Queue Example (Animation)

Dequeue (num) num
Array Implementation
m size
m front
m back 1

. N

< UNDERFLOW >
Linked List Implementation

m front »] NULL
k |
fiiviuordocinm

W UNIVERSITY

Queue Example (Animation)

Dequeue (num) num
Array Implementation
m size
m front
m back
Linked List Implementation
m front »] NULL
k |
i iviurdocn

W UNIVERSITY

Queue Example (Animation)

Enqueue (12)

Array Implementation

12

antfront
ak back

m_size

Linked List Implementation

m_front —pd 12

1

» NULL

riiviordocnm

W UNIVERSITY

Queue Example (Animation)

Enqueue (45)

Array Implementation

12

45

m_ front
m baak back

m_size

Linked List Implementation

M froNt amp

12

e

45

» NULL

[

]

riiviardocim

W UNIVERSITY

62 of 41

Queue Example (Animation)

Enqueue (23)

Array Implementation

12

45

23

m_ front
m backn back

m_size

Linked List Implementation

M froNt amp

12

e

45

e

23

» NULL

S |

riiviardocim

W UNIVERSITY

Queue Example (Animation)

Enqueue (87)

Array Implementation

12

45

23

87

m_front

m backn back

m_size

Linked List Implementation

M froNt amp

12

e

45

—> 23

» NULL

riiviardocim

N UNIVERSITY

Queue Example (Animation)

Enqueue (9)

Array Implementation

12

45

23

87

9

m_front

m backn back

m_size

Linked List Implementation

M froNt amp

12

e

45

e

23

» NULL

riiviardocim

N UNIVERSITY

Queue Example (Animation)

Enqueue (63)

Array Implementation

12

45

23

87

9

63

m_front

m backn back

m_size

Linked List Implementation

M froNt amp

12

e

45

e

23

877

— 03

» NULL

riiviardocim

N UNIVERSITY

Queue Example (Animation)

Enqueue (6)

Array Implementation

12

45

23

87

63

0

m_front

m backn back

m_size

Linked List Implementation

M froNt amp

12

e

45

e

23

— 87/

— 03

» NULL

riiviardocim

N UNIVERSITY

Queue Example (Animation)

Enqueue (22)

Array Implementation

/< OVERFLOW >

12 45 23 877 03 o m size '/
m_ front
m_ back
Linked List Implementation
o tront —s 12 = 45 = 23 87 > — 03 22 P NULL

/
T Viordoch—

N UNIVERSITY

Queue Example (Animation)

Dequeue (num)

Array Implementation

M froNt amp

12 45 23 877 03 0 m size
m fromt front
m_ back
Linked List Implementation
12 = 45 = 23 87 > — 03 22 P> NULL

/
T Viordoch—

N UNIVERSITY

Queue Example (Animation)

Enqueue (31)

Array Implementation

3145|2387 9 |63] 6 m size| B

m_ front
m_ back m_ back

Linked List Implementation
Mt M A5 23 87T 9 P o3 © 22 P 31

N UNIVERSI

END

Array Enqueue Algorithm

e ENQUEUE (DataType data): boolean

. IF m_size >= ARRAY_SIZE-1

o return FALSE

. ELSE

. Increment m_size

. Increment m_back MOD ARRAY_SIZE [1]
. Place data at position m_back

. return TRUE

. ENDIF

* END Enqueue

1 Murdoch

N UNIVERSITY

Array Dequeue Algorithm

DEQUEUE (DataType data): boolean
IF m_size ==
return FALSE
ELSE
data = data at position m_front
Increment m_front MOD ARRAY_SIZE
Decrement m_size

IF m_size ==
m_front =-1
m_back =-1

ENDIF

return TRUE

ENDIF

END Dequeue

1 Murdoch

N UNIVERSITY

Linked List Enqueue Algorithm

ENQUEUE (DataType data): boolean
IF there is memory on the heap
Get newNode from the heap
IF m_front is NULL
m_front = newNode
m_back = newNode
ELSE
m_back.next = newNode
m_back = newNode
ENDIF
return TRUE
ELSE
return FALSE
ENDIF
END Enqueue

m_front

m back

» NULL

76

'l Murdoch

W UNIVERSITY

Linked List Dequeue Algorithm

DEQUEUE (DataType data): boolean
IF m_front == NULL
return FALSE
ELSE
data = m_front.data
oldNode = m_front
IF m_back == m_front
m_front = NULL
m_back = NULL
ENDIF
m_front = oldNode.next
release oldNode memory
oldNode = NULL
return TRUE
ENDIF
END Dequeue

m_baCK N
»| NULL

m_front

A\

76

60

oldNode

'l Murdoch

W UNIVERSITY

Using the STL

The other possibility is to use one of the STL
structures.

If usin%a vector or list, then the algorithms
above barely change.

However, remember that the structure must still
be encapsulated in a class, otherwise it will not
have just the Enqueue () and Dequeue ()
that it is supposed to have.

Finally, there is the STL queue class, (requiring
<queue>), which is obviously the best STL class
to use.

— However, even this should be encapsulated, because

it does not conform to the standard queue
description! [1]

IIIIIIIIII

Non Standard Features of the STL
queue

1. Its Enqueue method is called push () [1]
2. Its Dequeue method is called pop () .

3. Itspop () method, only removes the data, it does not pass it back to the
calling method.

4. Infactthereisa £front () method which returns a reference to the front of
the queue.

5. Neither dequeue (), front () nor enqueue () return a boolean:
overflow and underflow must be checked separately.

Therefore it is best that the STL queue must be encapsulated. [2]

1 Murdoch

N UNIVERSITY

Queue Header File using STL queue

// Queue.h
//

// Queue class

/]

// See actual code provided in the zip file

#ifndef MY_QUEUE
#define MY_QUEUE

#finclude <queue> // for the STL queue
#include <iostream>
using namespace std;

L

Murdoch

UNIVERSITY

template <class T>
class Queue // minimal and complete

{

public:
Queue () {};
~Queue () {};

bool Enqueue(const T &data);

bool Dequeue (T &data);

bool Empty () const {return m_queue.empty();}
private:

queue<T> m_queue; // encapsulates STL queue

5

F'1 Murdoch

N UNIVERSITY

78 of 41

. —
. // It is a template, so we have to put all the code
. // in the header file
. —
. template<class DataType>
. bool Queue<DataType>::Enqueue(const DataType &data)
|
. bool okay = true;
° try
. {
o m_queue.pUSh(data); // calls STL queue method
. }
. catch (...)
. {
. okay = false;
. }
. return okay;
© }
1 Murdoch

N UNIVERSITY

. —

. template<class DataType>

. bool Queue<DataType>::Dequeue(DataType &data)

|

. if (m_queue.size() > 0)

. {

. data = m_queue.front();

. m_queue.pop();

. return true;

. }

. else

. {

. return false;

. }

1}

. —

. #endif
1 Murdoch
™ UNIVERSITY

Simple (but interesting) Example of Queue Use

* //IntQueueTest Program

« //

e //Version

» // original by - Nicola Ritter
 // modified by smr

« //
-/

* #include "Queue.h"

* #include <iostream>
* #include <ctime>

* using namespace std;

-/

* constint EVENT_COUNT = 20;
. const int MAX_NUM = 100;

- /]

* typedef Queue<int> IntQueue;
* typedef Queue<float> FloatQueue;

-/

F'1 Murdoch

N UNIVERSITY

. void DoEvents ();
. void AddNumber (IntQueue &aqueue);
. void DeleteNumber (IntQueue &aqueue);
. void TestOverflow();
. //
. int main()
. {
. DoEvents ();
. cout << endl;
. system("Pause");
. cout << endl;
. TestOverflow();
. cout << endl;
. return O;
. }
. //
1 Murdaoch
TY

. void DoEvents ()

. {

. IntQueue aqueue;

. // Seed random number generator

. srand (time(NULL));

. for (int count = 0; count < EVENT_COUNT,; count++)

. {

. // Choose a random event

. int event = rand() % 5;

. // Do something based on that event type, biasing
. // it towards Adding

. if (event <=2)//event=0, 1 or?2

. {

. AddNumber (aqueue);

. }

. else //event=3o0r4

. {

. DeleteNumber (aqueue);

. }

. }

. // aqueue is local so destructor for aqueue is called when routine finishes.
. }

. // mn Murdogh

void AddNumber (IntQueue &aqueue)

{

// Get a random number
int num =rand() % (MAX_NUM+1);

// Try adding it, testing if the aqueue was full
if (aqueue.Enqueue(num))

{
cout.width(3);

cout << num << " added to the queue" << end|;

}

else

{
cout.width(3);

cout << "Overflow: could not add " << num << end|;

F'1 Murdos

)

. void DeleteNumber (IntQueue &aqueue)

«
. int num;
. if (aqueue.Dequeue(num))
. {
cout.width(3);
cout << num << " deleted from the queue" << endl;
}
else
{
cout << "IntQueue is empty, cannot delete"” << end];
}
}
e

F'1 Murdoch

N UNIVERSITY

. void TestOverflow()

|
. Queue<double> mqueue;
. int count = 0;

// Keeping adding numbers until we run out of space, will take //time
while (mgqueue.Enqueue(count))

{

count++;
cout << "Count is " << count << endl;

F'1 Murdoch

N UNIVERSITY

Screen Output

IntQueue is empty, cannot delete
79 added to the queue

79 deleted from the queue
IntQueue is empty, cannot delete
2 added to the queue

2 deleted from the queue
IntQueue is empty, cannot delete
72 added to the queue

72 deleted from the queue

88 added to the queue

88 deleted from the queue

22 added to the queue

5 added to the queue

22 deleted from the queue

37 added to the queue

46 added to the queue

74 added to the queue

58 added to the queue

5 deleted from the queue

37 deleted from the queue

Press any key to continue . . .

Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count
Count

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

O J o U b w DN

L e i e e
< o0 0 W NP O

At 300,000 I stopped: it was

Just too borinﬁ
F'1 Murdoch

N UNIVERSITY

Advantages of Implementations

. It is assumed for each of the containers below, that the Queue
encapsulates it in its own class.

Array Linked List list/vector/deque STL queue
Available in all Full memory Easy to code Easiest to code
languages. control

Memory ‘never’ |Memory ‘never’ Memory ‘never’
runs out. [1] runs out. [1] runs out. [1]

1 Murdoch

N UNIVERSITY

Disadvantages of Implementations

. It is assumed for each of the containers below, that the Queue
encapsulates it in its own class.

Array

Linked List

list/vector/deque

STL queue

Can run out of space
easily.

Difficult to code as
it uses pointers.

Excess code sitting
‘behind’ the
implementation,
increasing the size of
the program.

Excess code sitting
‘behind’ the
implementation,
increasing the size of
the program.

essy to code, because

_back ends up in front of

_front

Available in some
languages like Java,
C++. [1]

Available in some
languages like Java,
C++. [1]

1 Murdoch

N UNIVERSITY

Readings

 Textbook: Stacks and Queues, entire section on Queues

« STL Queue: http://en.cppreference.com/w/cpp/container/queue

 For more details of Queues with some level of language
iIndependence, see the reference book, Introduction to
Algorithms section on “Stacks and Queues” in the chapter on
“Elementary Data Structures”. You will see that how removed
the STL queue is from the abstract queue we are after.
https://prospero.murdoch.edu.au/record=b2794699~S10

1 Murdoch

N UNIVERSITY

http://en.cppreference.com/w/cpp/container/queue
https://prospero.murdoch.edu.au/record=b2794699~S10

